
THE DESIGN AND IMPLEMENTATION OF A TEACHING WIKI

A Thesis
by

WILLOW EMMELIINE SAPPHIRE

Submitted to the Graduate School
Appalachian State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

May 2022

Department of Computer Science

THE DESIGN AND IMPLEMENTATION OF A TEACHING WIKI

A Thesis
by

WILLOW EMMELIINE SAPPHIRE
May 2022

APPROVED BY:

Cindy Norris, Ph.D.
Chairperson, Thesis Committee

James B. Fenwick, Jr., Ph.D.
Member, Thesis Committee

Alice McRae, Ph.D.
Member, Thesis Committee

Rahman Tashakkori, Ph.D.
Chairperson, Department of Computer Science

Marie Hoepfl, Ed.D.
Interim Dean, Cratis D. Williams School of Graduate Studies

Copyright © 2022 by Willow Emmeliine Sapphire
All Rights Reserved

Abstract

THE DESIGN AND IMPLEMENTATION OF A TEACHING WIKI

Willow Emmeliine Sapphire
B.S., Appalachian State University
M.S., Appalachian State University
Chairperson: Cindy Norris, Ph.D.

Web-based courses are a mainstay of modern learning. There are many websites that offer

tutorials and courses on nearly every subject. These courses are made by either individuals or

organizations. This thesis develops a website, Wiki Courses, that applies the wiki model to

online courses. Users of the website are able to create and edit any course they wish. The

content of every course is crowd-sourced by people on the internet and not controlled by any

individual or organization.

Wiki Courses uses Git as a database to store edits made to each course along with its

content. Saving this extra information provides editors the ability to undo changes. Using

Git as a database removes the need to manually create a system to store edits as Git already

saves this information. This significantly speeds up the process of creating a wiki. Git is not

traditionally used as a content database and so using it as such brings a number of challenges.

This thesis explores the effectiveness of Git as a database.

iv

Acknowledgements

I am unable to adequately express how grateful I am to those who helped create this thesis.

I did not do this alone and am incredibly thankful to everyone who supported me. First I want

to thank my thesis advisor, Dr. Cindy Norris. As I developed my thesis from the initial idea to

the completed work, she provided invaluable ideas, suggestions, and advice. Many of the main

concepts in this thesis started out as ideas from Dr. Norris. This thesis would not have been the

same without her.

Second, I want to thank my parents who have been a constant support throughout my

time in college. While writing this thesis, they provided a helpful ear on which to bounce off

ideas. Their help and support have been critical to my success, not only in this thesis, but in

my academic career as a whole.

v

Table of Contents

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . x

1 Introduction . 1

1.1 The Power of Wikis . 1

1.2 Git as a Database . 2

1.3 Introduction to Wiki Courses . 3

2 Related Work . 7

2.1 Crowd-sourcing Education . 7

2.1.1 Peer 2 Peer University . 7

2.1.2 Wikiversity . 8

2.2 Git Usage as a Database . 9

2.2.1 The LHCb . 9

2.2.2 The Open Tree of Life . 10

3 Background . 11

3.1 Angular . 12

3.2 Node.js . 13

3.3 Express . 15

vi

3.4 MongoDB . 16

3.5 Git . 17

3.6 Amazon Web Services . 18

4 Design & Implementation . 19

4.1 Client-Side . 19

4.1.1 Angular Components . 20

4.1.2 Angular Routing . 22

4.1.3 Angular Services . 22

4.1.4 Design & Interface . 24

4.2 Server-Side . 25

4.2.1 API . 27

4.2.2 MongoDB . 28

4.2.3 Git Database . 29

5 Testing . 33

5.1 Angular SPA Testing . 33

5.2 API Testing . 37

6 Conclusion . 40

6.1 Future Work . 41

Bibliography . 43

Vita . 46

vii

List of Figures

1.1 Wiki Courses Home Page . 4

1.2 Wiki Courses Course Page . 4

1.3 Wiki Courses Edit Page . 6

3.1 Wiki Courses Architecture . 11

3.2 Node.js: JavaScript & The Event Loop. Reprinted from [19]. 14

3.3 Authentication Middleware . 16

4.1 File Structure of Wiki Courses SPA Source Code 20

4.2 Angular App-Root Component . 21

4.3 Angular App-Root HTML Template . 21

4.4 Angular routing path with guards . 22

4.5 Injectable decorator used in services . 23

4.6 The Most Important Factors in Web Design. Reprinted from [21], page 19. . . . 24

4.7 Building the Express Object . 25

4.8 Express Decision-Making Process . 26

4.9 get and post handlers for courses . 27

4.10 getCourse function in CourseController . 27

4.11 Mongoose User Schema and related IUser interface 28

4.12 Object Mapping Between Node and MongoDB Managed by Mongoose. Reprinted

from [13]. 29

4.13 getCourse function of the courseDatabaseService 30

4.14 brokenName structure in the linked list nodes 31

4.15 Course Database System . 32

viii

5.1 Example of a Jasmine spy being used to mock the CreateService 34

5.2 Jasmine test for the Course Service . 35

5.3 Jest test for /api/courses/javascript endpoint 38

ix

List of Tables

4.1 Color Emotions on Web UI Design. Reprinted from [21], page 18 25

5.1 Number of SPA unit tests per component, all performed in Jasmine and Karma . 37

5.2 API tests per endpoint, all performed in Jest 38

x

Chapter 1 – Introduction

A wiki is a type of website that crowd-sources information by allowing many people to

edit the site content. Wikis are made up of a series of interconnected web pages that often

contain many links to both internal and external resources [10]. In most cases, wikis act as

databases of knowledge, providing detailed information on a set of topics [8]. This thesis

explores the creation of a wiki in which each page is a course aimed to teach the user about a

subject. This website is titled Wiki Courses. The use of a wiki for course creation allows

multiple, possibly unrelated instructors, to simultaneously develop the course. Wikis store the

revisions and edits made to them in addition to the content [10]. This allows edits to be

undone if needed. A unique contribution of Wiki Courses is that it uses Git, a distributed

version control system, to store the content and information about edits.

1.1 The Power of Wikis

Wiki comes from the Hawaiian term wiki wiki meaning quick. They were given this

name because they can expand very rapidly since any user is able to edit and add to them [12].

The ability to grow quickly is one of the main advantages of wikis. When an organization or

individual is solely responsible for website content, that content will take much longer to be

created [12].

1

One of the best examples of a wiki is Wikipedia. Wikipedia has created a huge database

of knowledge through crowd-sourcing and is one of the most trafficked websites in the

world [10]. Another excellent example is the website Fandom. Fandom itself is not a wiki, but

rather a platform for users to create wikis. Many games, TV shows, books, and other media

have wikis created on this platform. These wikis are often the primary resources for people

who consume the related media. In the case of these wikis, crowd-sourcing is not just

important to create the database quickly, it is also the only source of the information. Many

games and TV shows do not have a governing body that would be able to create such a

website. Therefore the users must create the database themselves in order to have it. This

makes wikis a valuable tool for these users and enables them to share information in a way

they otherwise would not be able to.

Another benefit of wikis is that they combine knowledge from many people, which can

help reduce biases and ensure all viewpoints are included. In addition, when many people are

working on the content, errors are more likely to be detected and the most necessary content is

likely included. Wikis allow any user who sees a flaw to fix it, which improves the overall

quality of the content.

1.2 Git as a Database

Since wikis are edited by the general public, there is always the danger that a user may

maliciously change a page for the worse by deleting sections or making substantial

inappropriate edits. Most wikis have a number of methods to help combat this problem. One

of the most important methods is the ability to revert a page to a previous version. This allows

users to undo bad edits without the need to manually rewrite the page. Performing these

reversions requires some sort of version control management.

2

Git is a version control system typically used to store code for programs being

developed [18]. Git allows users to revert their code to older versions and track all the changes

made. If a change breaks the program, it is possible to revert the code back to the last working

version. It is important to note that standard use of Git is for development, not production.

End users of the product have no interaction with Git. This is not the case for Wiki Courses.

Wiki Courses attempts to leverage the version control system of Git by using it as a

database. This means that end users unknowingly interact with Git. When a course is

requested by the user, the server retrieves the course information from the Git database and

returns it to the user. This is a novel usage of Git and it comes with a number of pros and

cons. Wiki Courses explores how Git can be used in this manner and the benefits of doing so.

1.3 Introduction to Wiki Courses

Wiki Courses is a wiki website where every subject is a course. There are no restrictions

on what the courses could be about. The main page of the website (Figure 1.1) has a list of

courses displayed, along with a search bar allowing users to search by course title. The list of

courses automatically updates as the search term is entered. The user can then select a course

and it will expand to display its description. Beside the description there is a button that the

user can click to go to that course page. Below the list of topics is a tool to allow the user to

determine how many topics to display on one page and a button to go to the next or previous

page of topics.

Each course is made up of a list of topics. When a user navigates to a course they are

taken to the first topic, which is always the course description (Figure 1.2). There is a

navigation menu to the left of the course page that can be used to go to any topic. There are

also navigation arrows at the bottom of the page to move to the next topic or previous topic.

Currently, topics are only text-based lectures using HTML formatting.

3

Figure 1.1: Wiki Courses Home Page

Figure 1.2: Wiki Courses Course Page

4

The difference between courses and topics is that courses are much larger in scope than

topics. A topic is a very specific subject while a course is an aggregation of topics that all

relate to a larger subject. For example, a course could be Java Programming. Topics within

that course might include classes, arrays, primitives, inheritance, and other knowledge relating

to Java.

A core part of Wiki Courses is the ability to edit content. Editing course content is done

through an html text editor (Figure 1.3). Courses can be created and edited by anyone but this

cannot be done anonymously. Editing requires that the user be logged in to a verified user

account. Wiki Courses has a user account system where users can create accounts and verify

their emails. Email verification is done through a secure link that is sent to the user’s email

from the server. Clicking on this link will take the user to a page on the server that verifies

their email and then redirects them to the website. Once logged in to a verified account, a

button appears in the header to create a new course and a button appears on each course page

to edit that course.

This thesis will discuss the usefulness of wikis and how they are implemented. It will

discuss the design, implementation, and goal of Wiki Courses as well as the limitations in its

creation. Finally, it will discuss how Wiki Courses was tested and how it can be improved

upon in the future.

5

Figure 1.3: Wiki Courses Edit Page

6

Chapter 2 – Related Work

2.1 Crowd-sourcing Education

Online learning, also called e-learning, has been a growing educational venue over the

past two decades. Most e-learning materials follow one of two approaches: knowledge

repositories or massive open online courses (MOOCs). Knowledge repositories contain

information which learners can use to better understand a subject. However, the information is

structured like an encyclopedia entry, not a course. These knowledge repositories are

sometimes crowd-sourced and sometimes created by a governing body. MOOCs are

structured courses that follow an institutional model similar to that of universities. Neither of

these types of e-learning platforms provide courses created collaboratively by the public.

However, there are some instances of e-learning platforms that leverage crowd-sourcing for

their curricula.

2.1.1 Peer 2 Peer University

Peer 2 Peer University (P2PU) is an open-education online community. Any user of the

platform can create their own course that other users can take. These courses are synchronous

and have class sessions held by the instructor. The goal of P2PU is to create a collaborative,

free, online learning environment [2].

7

Courses at P2PU cannot be taken at any time. The courses are held in a structured,

scheduled format similar to traditional, in-person learning systems. Course materials are

taught by the instructor. Signing up for a course as a participant indicates a commitment to

taking the course and remaining active throughout. Courses involve active participation from

the learners in the form of discussion groups, online forums, and group activities. Users may

also register for courses as a “follower” rather than a participant. Followers receive updates

from a course but are not committed to actively participating [2].

While the content on P2PU is crowd-sourced, the individual courses are not created

collaboratively. When a user creates a course, other users are not able to edit it. Peer 2 Peer

University is an example of creating a crowd-sourced collection of courses. However, each

individual course is still created and managed by an individual [7]. Having elevated privileges

for the course creator reduces the collaborative nature of the creation of academic resources.

2.1.2 Wikiversity

Wikiversity, a sister project to Wikipedia, attempts to crowd-source course materials and

become a free online university. The courses offered by Wikiversity are free to take at any

time and do not require signing up and do not have instructors [15]. The Wikiversity web

pages appear very similar to those of Wikipedia. Each course contains a list of categories

which may contain subcategories or pages. The pages contain information on the topic in the

form of text lectures and images. Wikiversity also contains a number of other academic

resources such as activities, flashcards, and articles. All of the content on Wikiversity is

entirely crowd-sourced [26]. At the time of this thesis, Wikiversity has 59 primary subjects,

each with a number of sub-categories. However, many of these categories contain no content

and are page stubs.

8

2.2 Git Usage as a Database

Git is a version control system, or more specifically a source control management

system, that developers use to store code [18]. Git tracks changes made to the code and

provides a multitude of features for managing the stored code. However, Git is not a database

management system (DBMS) and was not designed to be used as a content database. Git does

not define documents with properties and relationships nor does it provide a query language.

While Git was not designed as a DBMS, it does store data and provides version control on this

data in such a way that it can be used in place of a DBMS in some situations. This is a

relatively novel use of Git. While this is not the first project to use Git in this fashion, it is one

of a small number of projects that are involved in exploring this space.

2.2.1 The LHCb

In 2018, the Large Hadron Collider beauty (LHCb) experiment team at CERN decided to

use Git as a database [6]. CERN describes the LHCb experiment as an “experiment

specializ[ing] in investigating the slight differences between matter and antimatter by

studying a type of particle called the ‘beauty quark’, or ‘b quark’” [5]. The LHCb relies on

what they call a conditions database that stores information about the state of their equipment

at varying points in time. LHCb originally used a database built on SQLlite, a standard

relational database system. However, they found that there were limits to this system and

decided to start using Git instead. Git was chosen because of its ubiquity, ease of use, compact

file storage, and version control capabilities. The LHCb team built a front-end function library

for their system to interact with the Git repository. They also stored information within the file

system by defining the directory structure and file names [6].

The LHCb team found that their Git database performed better then their previous

9

SQLite database both in terms of access speed and storage size. The access speed was more

than twice as fast as the SQLite database and the storage space was reduced by approximately

6 times. The team concluded that Git was an excellent database system, but noted that the

system would likely not scale well [6]. The data stored by LHCb is ideal for a Git database

since it has a clearly defined structure that is not subject to change or grow. If the schema

changed or the amount of data grew significantly, Git would become difficult to use.

2.2.2 The Open Tree of Life

In 2015, researchers associated with the Open Tree of Life project developed an

infrastructure for biologists to share phylogenetic data using Git as a backend database. They

chose Git for it’s version control system to track edit history, its familiarity to developers, and

because they believed the editing pattern associated with their data would be well supported.

They found that this system lowered the cost of entering data into the archive and was

effective at supporting community curation. They also found Git helpful by allowing

individual researchers to clone the database and maintain their own versions [17].

10

Chapter 3 – Background

Wiki Courses is built using a MEAN stack. MEAN is an acronym for MongoDB,

Express, Angular, and Node.js. MongoDB is the database. Node.js and Express run the server

and all server-side code. Angular is the client-side application. Node.js and Express serve a

REST API for the Angular application to allow access to data on the server. Angular runs all

client-side code as a single-page application (SPA).

Figure 3.1: Wiki Courses Architecture

Figure 3.1 shows how all of these parts work together to create a functional website. Wiki

Courses also uses Git as a repository for all its code. Both the Angular application and the

11

API are hosted using Amazon Web Services. Finally, Wiki Courses also uses Git as a part of

its database. MongoDB is used to store user information and basic course information while

the data for each course is stored in a Git repository created for that course. The remainder of

this chapter provides an overview of these various technologies used to create Wiki Courses.

3.1 Angular

Angular is a JavaScript framework managed by Google and developed for creating

single-page applications (SPA). It defines an organizational system for client-side code that

promotes readability, re-usability, code composition, and separation of responsibilities.

Angular employs a Model-View-Controller (MVC) based pattern, allows easy integration

with RESTful APIs, and provides simple dynamic data binding, the cornerstone of a

responsive website [1].

Angular provides the web page that users will see when they first come to the website.

This page is a SPA that only contains one HTML page. The page has one large JavaScript

bundle attached to it that updates portions of the page as needed [20]. The SPA allows the

page to continually update without ever needing to refresh the browser. Browser refreshes can

be slow and unattractive. Navigation between pages can be simulated by simply updating the

content on the page with JavaScript so that the user still feels like they are interacting with

multiple pages. Additionally, SPAs can be completely stand-alone, without any strong

connection to a server. This makes RESTful APIs a perfect complement to them since they

exist as a stand-alone back-end [20].

Two notable alternatives to Angular are ReactJS and VueJS. Both perform the same

functions as Angular in web applications. There are many differences between the

frameworks but they all accomplish the same tasks and therefore any could be used for any

application. VueJS is a much smaller framework that does not define a file structure and can

12

control just a small portion of a website or the entire website. It is ideal for smaller

applications where Angular and ReactJS provide more functions than are required and add

unnecessary are more attractive options. Both are good choices and there is not a strong

reason to pick one over the other. Angular was chosen over ReactJS for Wiki Courses due to

personal preference.

3.2 Node.js

Node.js is used as the server for the REST API from which the SPA can make requests.

It is possible to host the SPA on the same server, but since they are completely separate

applications they can also be on separate servers. The Angular SPA is hosted on a second

Node.js server that has almost no logic and only serves the HTML page of the SPA. This

HTML page is always returned regardless of the path, which allows the Angular application

to handle navigation without interference from the server. A key benefit of Node.js over other

servers, such as Apache, is that it is written in JavaScript or TypeScript. This allows the

server-side and client-side code to be written in the same language, increasing code

readability. The API allows for asynchronous data transfer between the database and the SPA,

which is critical for maintaining a responsive web-page.

A RESTful API is a resource that can be accessed at a number of exposed endpoints.

These endpoints allow applications to make HTTP requests for resources on the server. The

API itself does not need to know anything about applications that use it, which provides

separation of responsibilities. There is a set of principles that define a REST API.

• Everything is a resource.

• Each resource is identifiable by a unique resource identifier (URI).

• Requests use the standard HTTP methods.

13

• Resources can have multiple representations such as XML and JSON.

• There is no internal state [3].

Node.js employs an event loop to manage requests (Figure 3.2). An event loop works by

sending operations to the database with a registered callback. The callback allows the loop to

process other requests while the current request is being handled. When the operation is

complete, the callback is triggered and the event loop returns the information to the requester.

Additionally, the event loop only employs a single thread, which helps conserve system

resources. Other similar technologies often create a new thread for each request, which can

quickly consume resources and potentially cause performance issues [19]. One potential

downside of this event loop is that if a normally asynchronous task, such as reading a file, is

performed synchronously, all operations of the server must pause until that task is complete.

Figure 3.2: Node.js: JavaScript & The Event Loop. Reprinted from [19].

Node.js provides a package manager called npm (node package manager). This package

manager provides a clean way to manage all the different packages used in an application.

The package.json file, required by every Node.js application, includes a list of all package

14

dependencies. These packages do not need to be stored in the project repository because the

npm install command will simply read all the dependencies and install them. When

using a MEAN stack, the packages relating to every layer of the stack are installed with npm,

providing a very clean organization. Wiki Courses has two separate package.json files since it

has two separate servers for the API and SPA. One file contains the back-end dependencies

and one contains all front-end dependencies.

3.3 Express

Express is a Node.js framework that simplifies the server-side code. Express eases web

application development with Node.js making it practically a ubiquitous partner [1]. Express

is one of the most downloaded packages found in npm for this very reason [14]. Express

makes the creation of APIs very simple by allowing the user to define routes based on the

standard HTTP methods, create middlewares for those routes, and elegantly handle errors.

Without Express, the development of a REST API for Wiki Courses would have been

significantly more time consuming and resulted in dense, complex code [14].

Middlewares are an important feature of Express. Http requests to the server can be

passed through any middlewares as specified by the route. This allows for functions that need

to be performed on multiple routes to be gracefully separated from the individual request

handlers. A good example of a middleware is an authentication middle as seen in Figure 3.3.

Figure 3.3 shows the authentication middleware used in Wiki Courses. (Note: the

password in the jwt.verify function has been changed). This middleware uses the

jsonwebtoken (jwt) package to track a user’s authentication status. Every HTTP request that is

trying to access a protected resource goes through this middleware to ensure they are only

accessible by authenticated users. Creating this sort of middleware functionality in plain

Node.js would require a lot of tedious and error-prone work and code. Express removes the

15

Figure 3.3: Authentication Middleware

need for this code to be handwritten by every individual developer by providing the ability to

attach middlewares.

3.4 MongoDB

MongoDB acts as half of the database for Wiki Courses. It stores all of the information

associated with user accounts and a small amount of information about courses. MongoDB is

a NoSQL (Not only SQL) database commonly used in modern stacks like the MEAN stack.

Wiki Courses uses MongoDB for four reasons: initial setup is easy and free; the database can

exist in the cloud; it scales well as the application grows; and it has excellent integration with

Node.js. Wiki Courses specifically uses MongoDB Atlas, which is the cloud-based version of

MongoDB. This enables the server to access the database remotely and removes the need for

any database software to exist on the machine hosting the website. The JavaScript package

Mongoose is used to provide easy interaction between Node.js and MongoDB (see Figure

3.1).

SQL relational databases have been the standard for decades, though in recent years

companies such as Google, Amazon, and Facebook have transitioned to NoSQL

databases [14]. Performance, flexibility, and scalability are all frequently cited as reasons for

16

this change [16]. SQL databases use a relational model that requires strict definitions for

every table. NoSQL databases provide more flexibility by not adhering to the strict table

structure of SQL while still including some relational capabilities, hence the acronym “Not

only SQL” [14].

Mongoose is a JavaScript package used to interact with a MongoDB database from

within Node.js. The structure of a MongoDB database resembles that of JSON (JavaScript

Object Notation) documents, which makes it easy for JavaScript to work with the database.

JSON is the conventional syntax for working with data in JavaScript [14]. Mongoose provides

the connection to the remote database and provides functions for querying the database.

Additionally, it allows for MongoDB documents to be defined in JavaScript using a

Mongoose schema object. This allows for the documents in the database to be wholly defined

in the server code.

3.5 Git

Git is a version control systems that is commonly used to store code for programming

projects. Wiki Courses stores all of its server-side and client-side code in Git repositories.

Specifically, Git repositories store versions of the contained files. When an update is made to

the project it can be committed using the Git commit command. This creates a new version

of the changed files. Previous versions are able to be “checked out” using the Git checkout

command. This reverts the files in the repository to their state at a specified commit.

A novel aspect of Wiki Courses is its use of Git as a database. As a wiki, Wiki Courses

can be edited by all users. This can cause problems when a user intentionally or accidentally

alters the course in a negative way, such as by deleting a large portion of it. In order to recover

from situations like this, the course data needs to be stored in a version control system so that

it can be restored to earlier versions. There are many ways to create version control systems

17

using a standard database like MongoDB. However, by putting course information in a Git

repository and saving changes with Git commits, the courses automatically have versions

saved every time the course is updated.

3.6 Amazon Web Services

Finally, for a website to be accessible on the internet, it needs to be hosted via a web

hosting service. Amazon Web Services (AWS) provides a variety of simple hosting solutions,

including free options for small websites. Wiki Courses is hosted using an Elastic Beanstalk

AWS server. Elastic Beanstalk is a type of web server provided by Amazon that is simple to

set up and scales well as applications grow. The API and SPA are hosted on separate Elastic

Beanstalk servers.

18

Chapter 4 – Design & Implementation

The Wiki Courses website is separated into two sections: client-side and server-side.

Each section is structured differently and uses different tools and technologies. The

server-side manages a REST API along with both the MongoDB and Git databases, all of

which is unseen by the end user. The client-side application manages the front-end

single-page application, which includes a user interface that introduced visual design

requirements not present in the server-side. This chapter will describe the implementation,

structure, and design of each section of Wiki Courses.

4.1 Client-Side

The code for the Angular application follows the file structure in Figure 4.1. The root

folder mainly contains configuration files. Angular is written in TypeScript, a superset of

JavaScript that must be transpiled into JavaScript to be run in the browser. The tsconfig files

provide configuration information to the TypeScript transpiler. The package.json is key for

any Node.js application. It defines all of the dependencies for the project as well as

configuration details and scripts for testing and running the project.

The src folder holds the code for the application. The index.html file is the entry point

for the SPA and main.ts is the entry point for the Angular code. These files are written by

19

Angular when a project is created and never changed. The source code that defines the

application lies in the app folder.

Figure 4.1: File Structure of Wiki Courses
SPA Source Code

When the application is transpiled using Angular’s

ng build command, a dist folder is output

that contains the HTML, JavaScript, and CSS required

to display the website. Angular has combined all of

the code from the src folder in Figure 4.1 along with

all of the dependencies into just a few files. These are

the files that are actually hosted on the website. They

are never modified directly and only change when

the Angular application is rebuilt. This dist folder is

created in a separate repository that contains a simple

Node.js server. This server hosts the Angular SPA.

4.1.1 Angular Components

Components in Angular have three parts: an HTML template, a CSS bundle, and an

Angular component object, which is a JavaScript class decorated with the component

decorator as seen in Figure 4.2. Decorators are a special Angular syntax that allow a

JavaScript class to be marked as an Angular object and provide metadata for using the

object [22]. In Figure 4.2 the component decorator is used to specify three parts of the

component: the selector (HTML tag), the HTML template to render when using the

component, and a list of CSS files used to style the template. Component templates can range

from very complex to very simple HTML. Components can include other components in their

template, called component composition, which helps reduce the complexity of any single

component template.

20

Angular begins at a root component that is rendered in the auto-generated index.html file.

This component usually has very little logic in it and serves as a foundation for the

application. In Figure 4.2 we can see the TypeScript code for the root component. The only

thing it is doing is attempting to auto-authenticate the user if they have an active token. The

HTML for the root component is similarly sparse as seen in Figure 4.3. It includes three

special Angular components: app-header, app-footer, and router-outlet. The header and footer

are custom components that make up the header of the website and the footer of the website.

These are included in the root component’s template since they should be displayed

everywhere on the website. Finally, there is the router outlet that displays the appropriate

component as defined by the Angular router.

Figure 4.2: Angular App-Root Component

Figure 4.3: Angular App-Root HTML Template

21

4.1.2 Angular Routing

Navigation in Wiki Courses is done via the Angular router. This router uses a routes

object that defines pairs of paths and corresponding components. When a user navigates to a

path in the routes object, the router loads the corresponding component in the router-outlet tag

as seen in Figure 4.3. This prevents the browser from performing the navigation itself, which

would reload the page. Instead, it only updates the content within this tag to reflect the

appropriate component.

Figure 4.4: Angular routing path with guards

Wiki Courses leverages the

guards feature of Angular routes.

Guards are called by the router at

a specified time during navigation.

Figure 4.4 shows a route for

the course edit page that has two

guards: AuthGuard and PendingChangesGuard. AuthGuard runs whenever the router

navigates to this page. It checks that the user is authenticated before allowing the router to

navigate to the edit page. If the user is not authenticated then it redirects to the home page.

PendingChangesGuard runs when the user attempts to leave the page. It checks if there are

any unsaved changes and warns the user to save them before leaving the page or else they are

lost. The ability to separate these guards from the pages on which they activate allows them to

be reused for multiple routes and keeps all navigation logic within the router.

4.1.3 Angular Services

In Wiki Courses, Angular services contain all the logic for making requests to the API.

There is a separate service for every API entry point. These services are used by components

for all interactions with the database. By separating this logic into services, all components

22

can access the same functions. This avoids code repetition and isolates the responsibility of

making HTTP requests.

Figure 4.5: Injectable decorator used in services

Services in Wiki Courses are provided

to components using the dependency

injection function of Angular. Services

are given the Injectable decorator (see

Figure 4.5), that directs Angular to treat the

service as a dependency. Angular applies the

singleton design pattern to dependencies [23], which ensures that there is only one instance of

the class [9]. All components that use the service will access the same instance.

The use of a service can be seen in Figure 4.2. The service, in this case AuthService, is

initialized in the component constructor where Angular dynamically injects the service and

stores it in the specified variable when the component is first created. The syntax used in the

constructor is shorthand for creating an instance variable named authService of type

AuthService, having an AuthService instance passed into the constructor, and assigning the

provided AuthService to the instance variable. The root component then uses the service when

the component is initialized to attempt to auto-authenticate users if they are already logged in.

23

4.1.4 Design & Interface

Figure 4.6: The Most Important Factors in Web Design.
Reprinted from [21], page 19.

Wiki Courses is intended to host

a variety of different courses, all of which

use the same style interface. The content of

the courses is customizable by the users but

the interface through which that content is

accessed is not. This is to provide continuity

between courses so that users know

what to expect when they visit a course.

This is a principal followed by most wikis:

each subject should follow the same format.

Research on user preferences in interface design was consulted to determine an

appropriate style for Wiki Courses. A study titled Does Color Matter on Web User Interface

Design? gathered statistics on students’ views of “the most important factor in designing

websites” [21]. Figure 4.6 shows that the ability to find what they are looking for is by far the

most important aspect of a website. Appearance was second-most important, and

sophisticated interactive experience was only chosen by 10% of the surveyed students [21].

With this in mind, Wiki Courses emphasizes simplicity in design to appeal to student

preferences with the goal of supporting user retention. Each course maintains the same

navigation and layout so that it is easy to switch between courses without confusion.

Color scheme was also considered in the design of Wiki Courses. Table 4.1 shows the

emotional effects of colors as viewed from web browsers. Other studies have shown specific

moods colors can evoke. For instance, red can evoke importance and green can engender

stability within a viewer [21]. This research on the effect of colors informed the

decision-making process when designing Wiki Courses. Light blue and white were selected to

24

be the main color scheme for the website since they promote feelings of safety, calm,

openness, simplicity, cleanliness, and virtue [21].

Color Promotes
Red Importance, power, youth
Orange Uniqueness, friendliness, arise energy and a sensation of movement
Yellow Happiness, enthusiasm, antiquity (darker shades)
Green Growth, stability, financial themes, and environmental themes
Blue Safety, calm, openness (lighter shades), strength and reliability (darker shades)
Purple Luxury, romance (lighter shades), mystery (darker shades)
Black Power, edginess, sophisticated and timeless
White Simplicity, cleanliness, virtue
Gray Formality, neutrality, melancholy
Ivory Elegance, simplicity, comfort
Beige Traits of surrounding colors, humility, a secondary or background color

Table 4.1: Color Emotions on Web UI Design. Reprinted from [21], page 18

4.2 Server-Side

Figure 4.7: Building the Ex-
press Object

The server begins with app.js, the file that creates the

server using Express, and exports it in order to be served by the

server.js file. The Express object app is created with the express()

constructor that simplifies the process of creating an application

in Node.js. This file also connects to the remote MongoDB

database using Mongoose, sets Cross-Origin-Resource-Sharing

(CORS) headers, and finally serves the API endpoints

with the code in Figure 4.7. The app.use() method allows the

application to connect a URL path to an express.Router object.

When the API is accessed at a valid path, /api/user or /api/courses as shown in

Figure 4.7, Express passes the request through to the router responsible for processing

requests at that endpoint. The router looks at the path of the request, the type of request (put,

25

get, delete, etc), and any parameters to the request. It then selects a set of middlewares to pass

the request through and a function to respond to the request. Figure 4.8 describes this entire

process. In order to separate the responsibility of responding to requests from routers,

controller files are created. Typically each router has a corresponding controller that contains

all the functions that the router might use to respond to a request.

Figure 4.8: Express Decision-Making Process

26

4.2.1 API

Figure 4.9: get and post handlers for courses

The Wiki Courses API has

two primary entry points as seen in

Figure 4.7: user and courses. Both

entry points have a set of defined

routes that describe what action

should be taken given a particular

HTTP request. The routes object

connects an HTTP request with

a function from the corresponding

controller. Portions of a path that

begin with a colon are parameters

and can contain any value. For example, in Figure 4.9, a get request to the /course route with

one parameter is passed to the getCourse function of the CourseController. The parameter

will be stored in a variable named courseTitle.

Figure 4.10: getCourse function in CourseController

The controller contains

the logic to handle the request and

return the appropriate response.

This usually involves performing

a query on the database. In the

getCourse function in Figure 4.10,

the courseDatabaseService is used

to query a course with a particular title, which it accesses using the params property of the

request. After performing the query, it creates a response that is sent to the user containing

either the query result or an error message if the query failed.

27

4.2.2 MongoDB

Figure 4.11: Mongoose User Schema and related IUser interface

The MongoDB database

is hosted on the cloud using

MongoDB Atlas. It is not actually

found in the code for the website,

nor is it on the AWS machine

hosting the website. The server uses

the JavaScript package Mongoose to

connect to the database and interact

with it. The server creates models

using a Mongoose schema (Figure

4.11) that define the structure

of documents in the database.

Since the server code is written

in TypeScript, a superset of JavaScript, there is an extra step of creating an interface to model

the structure of the data when it is returned from the database. A Mongoose schema is used to

interact with the database and define models within the database, but when a query is

performed, the result is a simple JavaScript object, not a schema object. By creating the IUser

interface to go along with the User schema, the model can be defined as returning an IUser

object. This allows any code that interacts with the schema to know the exact structure of the

object returned from it. This is useful when programming as it enables IDEs (Integrated

Development Environments) to check whether the returned objects are being used in a valid

manner. For example, if a user document was queried and then the querying function accesses

the name property of the user; the IDE is able to highlight this as an error since there is no

name property on the return type. Without the interface there would be no way for the IDE to

28

know the structure of the returned user as it would be an any type by default.

One of the key features of Mongoose is object mapping. Object mapping refers to how

Mongoose translates data from the format in MongoDB to JavaScript objects. This process

can be seen in Figure 4.12. Object mapping allows data in MongoDB to be created and

manipulated within JavaScript without the need to understand how MongoDB actually stores

the data. Additionally, with the use of TypeScript interfaces, the Node.js server is able to

know the exact structure of the returned data, still without knowing anything about the

representation of the data in MongoDB.

Figure 4.12: Object Mapping Between Node and MongoDB Managed by Mongoose. Reprinted from [13].

4.2.3 Git Database

Wiki Courses uses Git as a database alongside MongoDB. Every course on the website

has its own Git repository on the server. MongoDB stores the title of each course along with

the path to the corresponding repository. The content of the topics of the course are stored in

HTML files in this repository. The title of each topic is the name of the corresponding HTML

file. When a query is made for a particular course, the server first checks MongoDB for the

path to the course repository while also verifying that the course exists. If the course exists

then the server reads in the files from the repository for that course and constructs JavaScript

objects with the title and content of each topic that is then sent to the client.

The server has a special service for handling this hybrid database. The service is called

29

courseDatabaseService and its use is seen in Figure 4.10. By separating these functions into

their own service, the controllers do not need to handle the logic for using the MongoDB

database and the Git database. The function called in Figure 4.10 can be seen in Figure 4.13.

Figure 4.13: getCourse function of the courseDatabaseService

One problem encountered

by this approach is the ordering

of topics within a course.

The topics of a course have

a specific order, but since the

topics exist as files in a folder,

the order of topics is not saved.

Additionally, these topics

need to be able to be re-ordered

and maintain their order

when a topic is deleted. For the

database to maintain the correct

order of topics, it uses a linked list data structure. Each node in the linked list contains the

path to a particular topic file along with a pointer to the topic that comes after it and a pointer

to the topic that comes before it. The courseDatabaseService maintains a set of these

structures in memory, one for each course. The use of this structure can be seen in Figure 4.13

where the linked list of topics for the given repository is accessed at

this.dbLists[course.repo].

Since this data structure resides in memory it must be able to be constructed from a

folder whenever the server restarts. In Figure 4.13 the function checks if the linked list has

been created for this repo already. If it has not, it calls the rebuildTopicList function before

proceeding. This function rebuilds the topic list from the repository folder. In order to do this,

the linked list gives every file a four-digit code that is appended to the file name. It also

30

appends the code of the next topic at the end of the file name. Together, all three parts of the

filename are called a brokenName (Figure 4.14). When the rebuildTopicList function is run, it

constructs the linked list from a folder by reading in the file names, splitting them into broken

names, and using the codes to order the list. The nodes are then responsible for returning the

correct file name without the codes when the topic data is queried.

Figure 4.14: brokenName structure in the linked list nodes

The purpose of using Git is to

leverage its version control system.

Wikis require some sort of version

control system due to the lack

of oversight of edits. Most wikis

have some sort of written version

control system that utilizes a standard database. These systems work well but they are very

time consuming to create from scratch. The benefit of using Git is that a version control

database can be implemented very quickly as Git has built in version control. Within the

scope of this thesis, Git was an optimal choice for this reason.

When a user requests to revert a course to a previous version, the server executes a Git

checkout command for the commit corresponding to the requested version. The versions

displayed to the user are the output of a Git log command and show the username of the

editor, the timestamp, and the message provided by the user who made the change. After a

reversion, the later commits have not been erased, so they can still be checked out, but they

are no longer displayed to users on the website.

When a course is deleted, the document in MongoDB containing the name of the course

and the repo location is removed. However, the course folder in Git is not deleted. This allows

an admin user to restore the course if necessary by manually adding the course back into

MongoDB with the path to the course folder.

31

Figure 4.15 shows how requests are processed in the database system and the

responsibilities of each part. The requests are received by the course controller which

determines what sort of database action is required and then calls the course database service

to perform that action. The course database service fulfills these requests by using the git

database service to perform git commands, the linked file list service to extract topic

information from the repositories, and MongoDB to get repository names.

Figure 4.15: Course Database System

32

Chapter 5 – Testing

Automated tests are an important part of developing any large scale application. The web

pages, API endpoints, and internal functions of the website all need to be tested to ensure they

are running correctly. Wiki Courses was tested using JavaScript test functions. Since the API

and SPA were built with different JavaScript frameworks, they are also tested with different

tools. Angular has a built-in unit testing framework using the tools Karma and Jasmine. This

testing framework is ideal for Angular applications. The Angular testing framework does not

provide end-to-end testing functions. Since the Wiki Courses API is not an Angular

application, it required a different tool for testing. The API was tested using the JavaScript

testing runner and framework Jest, which is particularly suited for testing Node.js APIs. Jest

is used for both unit tests and end-to-end tests on the API.

5.1 Angular SPA Testing

The Wiki Courses Angular SPA was tested using Karma and Jasmine. Karma is a test

runner for JavaScript applications. It creates a Node.js server and runs source code against test

code on a number of specified browsers [25]. This allows code to be tested on real browsers in

the same manner that it will be used by clients. Wiki Courses was tested in Google Chrome,

the default testing browser for Angular applications in Karma. Karma does not provide an

33

assertion library or any kind of testing framework. Testing frameworks provide JavaScript

functions to write tests for JavaScript applications. However, they do not provide a utility to

run these tests. This utility is provided by test runners such as Karma.

Jasmine is a behavior-driven development (BDD) JavaScript testing framework [4].

BDD is a development paradigm that encourages quick collaboration between the developers

and non-developers working on a project. BDD frameworks define tests in a way that is easily

understandable to those without technical knowledge. Wiki Courses was developed by a

single individual and therefore did not employ the BDD methodology. However, Jasmine was

designed to support BDD but not require it. It is a strong and useful testing framework

irrespective of development methodology [4].

Jasmine is used for unit testing where small sections of source code are tested

individually. It is not used to perform integration testing or end-to-end testing. Jasmine

provides a structure for tests along with numerous testing functions and utilities. In order to

test components in isolation, dependencies for those components must be faked. Jasmine

provides Jasmine spies to fake dependencies. In addition to providing mock dependency

functions, spies record information about function calls to test if the dependencies are being

used correctly [4].

Figure 5.1: Example of a Jasmine spy being used to mock the CreateService

Figure 5.1 shows the creation of a Jasmine spy. The spy is created on line 29 using the

34

jasmine.createSpyObj function, which is passed the name of the service it is providing and a

list of functions for that service. The resulting spy provides the CreateService and has one

function: openCourseCreation. Then, on line 37, the spy is provided to the Angular

component in place of the normal CreateService. Finally, the spy is used in a test where it

checks that the openCourseCreation method has been called one time on line 51. Jasmine

spies were heavily used in the testing of Wiki Courses.

Angular has testing functionality built into it using Karma and Jasmine [24]. Wiki

Courses used the default configurations for both of these tools. Angular provides the ’ng test’

console command to run tests. In addition to launching Karma, ng test also builds the

necessary parts of the Angular application for the tests. Angular also provides some additional

testing functions that are specific to Angular applications and work in tandem with Jasmine

functions.

Figure 5.2: Jasmine test for the Course Service

Unit tests require code

to be tested in isolation. To do

this, any code that is depended

upon by the code being tested

must be replaced with a fake

version. Angular provides fake

versions of common Angular services such as the HttpClient. These fake versions work

similarly to Jasmine Spies with some additional features. In Figure 5.2, the GetCourse

method of the CourseService is being tested. In order to prevent actual HTTP requests being

made to the API, an Angular HttpTestingController (httpController) is used in place of the

normal HttpClient. The httpController provides data about requests made to it which is used

to test that the CourseService makes the correct HTTP requests.

The test in Figure 5.2 begins by calling the getCourse method on the courseService.

35

Since this method is asynchronous, it sets up a callback function that will run when the

method completes. This callback function asserts that the correct course was returned. When

the getCourse method runs, it makes an HTTP request to the API for a particular course.

During testing, this request is made to an HttpTestingController rather than the normal HTTP

service. After making the call to getCourse, the test expects that the httpController has

received an HTTP request for a particular endpoint. After checking that the correct request

was made, the httpController returns a hardcoded course value to the getCourse method using

the flush function. Once this value is returned, the getCourse method will complete and the

assertions in the callback function will run.

Each unit test in Wiki Courses tests a specific part of a component. The quantity of tests

performed on each component of Wiki Courses depends upon the complexity of that

component. For example, the footer of the website displays a small amount of information

and contains a link to the feedback page. In contrast, the header contains many links which

display conditionally depending on the login status of the user. Additionally, some of these

links run functions rather than navigate the user to a new page. As a result, the header

component requires many more tests than the footer component.

These tests can be roughly divided into two categories: structural and functional.

Structural tests check the HTML of the component and compare part of it to an expected

value. Functional tests check that the logic of the component behaves correctly. An example

of a structural test would be a test that looks at a course page and asserts that the title of the

course should be displayed on the page. An example of a functional test could be a test that

asserts that a PUT HTTP request should be made when the ’save course’ button is clicked

while editing a course. Some tests contain both structural and functional elements. These tests

check whether the HTML of a component changes correctly when a certain function is

performed.

36

Table 5.1 shows the number of unit tests created for each of the primary components of

Wiki Courses. The components are split into 3 categories: page, element, and service. Pages

are Angular components that make up an entire web page and are routed to via the Angular

router. Elements are Angular components that are used in pages but are not entire pages

themselves. Services are libraries of functions and do not have any HTML associated with

them. Therefore tests on services are all functional. The table orders the components by

number of associated tests. This ordering also shows the comparative complexity of each

component.

Component Name Component Type Number of Tests
Course Service Service 17

Course Edit Page 13
Course Display Page 11

Header Element 11
Auth Service Service 9

Advanced Page 8
Course List Page 6
Topic Menu Element 5

Account Page 5
Signup Page 4
Login Page 4

Verified Page 4
Footer Element 3
About Page 2

Table 5.1: Number of SPA unit tests per component, all performed in Jasmine and Karma

5.2 API Testing

The Wiki Courses API was tested using Jest. Jest is a widely used JavaScript test runner

with many built-in testing features. It supports testing of asynchronous operations, which is

important when testing APIs. Jest includes an assertion function library that is built on

Jasmine [11]. Jest is very similar to Karma and Jasmine used together as it provides both a

37

testing framework and a test runner. However, it includes more functions for testing an API.

Jest also works well with Node.js servers that use TypeScript while many other testing

frameworks only support JavaScript. This makes Jest an excellent choice for testing Wiki

Courses as Wiki Courses is a Node.js API written in TypeScript.

Figure 5.3: Jest test for /api/courses/javascript endpoint

Figure 5.3 shows a test

for the API endpoint used

to retrieve a single course

by title. Jest starts the server

and visits the specified

URL. It then compares the

response code and response

body to values provided in

the test. Wiki Courses uses this method of testing for all of its API endpoints.

API Endpoint Accepted request types # Tests
/api/courses/:courseTitle GET, DELETE 5

/api/courses/:courseTitle/topics/:topicTitle GET, DELETE 5
/api/courses/:courseTitle/topics GET, POST 4
/api/courses/:courseTitle/title PUT 4

/api/courses/:courseTitle/topics/:topicTitle/title PUT 4
/api/courses/:courseTitle/description PUT 3

/api/courses/:courseTitle/topics/:topicTitle/contents PUT 3
/api/courses GET, POST 3

Table 5.2: API tests per endpoint, all performed in Jest

Table 5.2 shows the number of tests for each course API endpoint. Every course API

endpoint is tested at least once. Many are tested in multiple ways by accessing them with

different request bodies and headers. The tests check for both success and failure by issuing

valid requests and invalid requests. Endpoints that accept multiple types of requests (GET,

POST, PUT, DELETE) have more tests than endpoints that only accept one type of request.

38

Manual testing of the entire website, SPA and API together, was also performed. These

tests are not as rigorous as automated tests and are only intended to supplement them.

Automated tests will only catch errors that the developer checks for. There can be unexpected

errors that are missed by automated tests but can be caught in a manual test. When performing

a manual test, all pages of the website are visited both when logged out and logged in. The

content of these pages is verified by the tester. Manual tests were performed regularly during

the development of Wiki Courses and often found errors missed by automated tests.

39

Chapter 6 – Conclusion

Wiki Courses successfully demonstrated the use of Git as a back-end database in

implementing a special purpose wiki. The use of Git provided a version-control system for

free, which made the implementation much faster than it would be if implementing a

version-control system from scratch on top of a standard database. The overall

implementation process went smoothly, with no area indicating particular difficulty. While

specific performance tests were not run, the apparent performance of Git as a backend

database subjectively seemed to be sufficient. Wiki Courses performed well under the small

scale load tested, and the end user could observe no indication about what was being used on

the backend.

Implementing the Wiki Courses database this way required no knowledge of database

management systems or of SQL. It did require an understanding of Git commands, something

that is nearly ubiquitous among today’s developers. Little difficulty was experienced in

choosing the methodology for mapping the chosen schema onto the names stored in Git. If the

schema had been more complex or subject to frequent change then this area may have

presented more drawbacks to this approach.

The primary downside to using Git as a backend is the loss of generality in approaching

the data as if it were stored in a database. It could become complex to decide how to map

individual objects and their relationships to one another into file names in Git. It would also

40

be more difficult to update the schema, although this is not always simple with standard

databases either. The use case of a very large number of inter-related records with many

different types of objects and a high volume of of accesses and searches is not the intended

use case that was addressed here.

Wiki Courses itself, as a content creation platform, worked as hypothesized. Multiple

creators were able to create courses and update them with no difficulty. While formalized

scoring of user research was not conducted, users did report finding the interface intuitive and

were able to create content quickly and without issue. They did feel that the editing

capabilities could be enhanced to allow for more flexibility in content creation.

6.1 Future Work

Future work for Wiki Courses includes larger scale use of Git as a database to see how it

performs with significantly more content. Performance tests will require a version control

database that uses standard database technology such as MongoDB for comparison. These

tests were not feasible in the scope of this thesis due to the time consuming nature of creating

a version control database. However, these tests are critical in determining how effective a Git

content database is.

Wiki Courses has the potential to be an effective website if certain improvements are

made and more user feedback is acquired. Some of these improvements are as follows:

• More types of content

Text lectures could be supplemented with additional content such as images, videos,

quizzes, and downloadable content. These additional types of media would greatly

improve the quality of lectures by providing editors with more options to best convey

information.

41

• Improved version management

The current system does not allow editors to view what a previous course version

looked like before reverting to it. This functionality would be a big improvement as it

would reduce the importance of editors providing detailed messages about their

changes. Additionally, non-admin editors could also be given the ability to revert a

course to a newer version rather than only being able to revert to an older version.

• Increased moderation

Malicious edits can be reduced by requiring changes to be approved by multiple editors.

Users can also be ranked by how much they contribute and some privileges could be

restricted to higher ranked users. Machine learning software can also be employed to

detect edits that appear malicious and flag them for review.

• Improved account pages

Account pages could allow users to save courses they are working on and track the edits

they have made to courses. They could also allow users to change their username and

email as well as recover their password. Other user information, such as rank, could be

provided on the account page as it is added to the website.

• User Testing and Feedback

User feedback would help evaluate the quality and potential usefulness of the website.

It would also provide information on what improvements and features are most

important to implement.

Wiki Courses is a pilot proof of concept website for an academic course wiki. It also

demonstrates how Git can be used as a version control database. Wikis have proven to be a

powerful type of website that effectively crowd-source information. While this does not

guarantee that courses created in a wiki would be of a high quality, it is an indicator of the

possibility.

42

Bibliography

[1] Sanchit Aggarwal and Jyoti Verma, Comparative Analysis of MEAN stack and MERN Stack, International

Journal of Recent Research Aspects 5 (2018), no. 1, 133–137.

[2] June Ahn, Cindy Weng, and Brian S. Butler, The dynamics of open, peer-to-peer learning: What factors

influence participation in the p2p university?, 2013 46th hawaii international conference on system

sciences, 2013, pp. 3098–3107.

[3] Valentin Bojinov, RESTful Web API Design with Node.js, 2nd ed., Packt Publishing, Birmingham, UK,

2016.

[4] Jess Campbell, Jasmine JS: Start Testing From Scratch,

‘https://www.testim.io/blog/jasmine-js-a-from-scratch-tutorial-to-start-testing’ (2021).

[5] CERN, LHCb, ‘https://home.cern/science/experiments/lhcb’ (2022).

[6] Marco Clemencic, A git-based conditions database backend for lhcb, 23rd international conference on

computing in high energy and nuclear physics (chep 2018), 2019, pp. 3098–3107.

[7] Joseph Corneli and Alexander Mikroyannidis, Crowdsourcing education on the web: A role-based analysis

of online learning communities, 2012.

[8] Parker Flynn-Adey, Using Wikis to Support Student Inquiry in Large Math Classes, The Electronic Journal

of Mathematics and Technology 15 (2021), no. 2.

43

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns, 1st ed.,

Addison-Wesley, Boston, MA, 1995.

[10] Bill Hunter, Reflections on the Co-Creation of a Course Wiki, Canadian Journal of Action research 18

(2017), no. 3, 2–11.

[11] Zhongyuan Jin, Design and implementation of full-stack testing for web spa in javascript, Ph.D. Thesis,

Aalto University, 2020.

[12] Gerald C. Kane and Robert G. Fichman, The Shoemaker’s Children: Using Wikis for Information Systems

Teaching, Research, and Publication, MIS Quarterly 33 (2009), no. 1, 1–17.

[13] Nick Karnik, Introduction to Mongoose for MongoDB,

‘https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-d2a7aa593c57’ (2018).

[14] Jason Krol, Web Development with MongoDB and Node.js, 1st ed., Packt Publishing, Birmingham, UK,

2014.

[15] Teemu Leinonen, Tere Vadén, and Juha Suoranta, Learning in and with an open wiki project: Wikiversity’s

potential in global capacity building, First Monday 14 (2009), no. 2.

[16] Michael Madison, Mark Barnhill, Cassie Napier, and Joy Godin, NoSQL Database Technologies, Journal

of International Technology & Information Management 24 (2015), no. 1, 1–13.

[17] Emily Jane McTavish, Cody E. Hinchliff, James F. Allman, Joseph W. Brown, Karen A. Cranston, Mark T.

Holder, Jonathan A. Rees, and Stephen A. Smith, Phylesystem: a git-based data store for

community-curated phylogenetic estimates, Bioinformatics 31 (2015), no. 17, 2794–2800.

[18] Microsoft, What is Git?, ‘https://docs.microsoft.com/en-us/devops/develop/git/what-is-git’ (2021).

[19] Victor Ofoegbu, The Only NodeJs Introduction You’ll Ever Need,

‘https://codeburst.io/the-only-nodejs-introduction-youll-ever-need-d969a47ef219’ (2018).

[20] Vinci Rufus, AngularJS Web Application Development Blueprints, 1st ed., Packt Publishing, Birmingham,

UK, 2014.

44

[21] Wirania Swasty and Andreas Rio Adriyanto, Does Color Matter on Web User Interface Design?, CommIT

(Communication & Information Technology) Journal 11 (2017), no. 2, 17–24.

[22] Angular Team, Component, ‘https://angular.io/api/core/Component#description’ (2020).

[23] , Injectable, ‘https://angular.io/api/core/Injectable’ (2020).

[24] , Testing, ‘https://angular.io/guide/testing’ (2021).

[25] Karma Team, Karma Official Documentation, ‘http://karma-runner.github.io’ (2021).

[26] Wikiversity, Wikiversity, Wikiversity.org (2020).

45

Vita

Willow Emmeliine Sapphire was born in 1994 in Raleigh, North Carolina to Barton and

Pamela Vashaw. Computers and code were a large part of their childhood. They graduated

with an M.S. in Computer Science from Appalachian State University. They have worked as a

full stack web developer, a mobile app developer, and a web developer throughout their

education, both independently and for the University-affiliated BeeInformed Partnership.

They aspire to continue within academia and attain a PhD to teach at the university level.

46

